## February

### Round #770 (Div. 2)

#### Reverse and Concatenate

You are given a string s of length n and a number k. Let’s denote by rev(s) the reversed string s (i.e. rev(s)=snsn−1…s1). You can apply one of the two kinds of operations to the string:

- Replace the string s with s+rev(s)
- Replace the string s with rev(s)+s

How many different strings can you get as a result of performing exactly k operations (possibly of different kinds) on the original string s?

In this statement we denoted the concatenation of strings s and t as s+t. In other words, s+t=s1s2…snt1t2…tm, where n and m are the lengths of strings s and t respectively.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

#include <bits/stdc++.h>
using namespace std;
typedef long long int ll;
int solve()
{
ll n, k, ans(0);
string str;
cin >> n >> k >> str;
if(!k) return 1;
bool isPal(true);
for(int i = 0; i < n; i++)
if (str[i] != str[n - i - 1])
return 2;
return 1;
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
ll test;
for (cin >> test; test--;)
cout << solve() << endl;
}

#### B. Fortune Telling

Your friends Alice and Bob practice fortune telling.

Fortune telling is performed as follows. There is a well-known array a of n non-negative integers indexed from 1 to n. The tellee starts with some non-negative number d and performs one of the two operations for each i=1,2,…,n, in the increasing order of i. The possible operations are:

- replace their current number d with d+ai
- replace their current number d with d⊕ai (hereinafter ⊕ denotes the bitwise XOR operation)
Notice that the chosen operation may be different for different i and for different tellees.

One time, Alice decided to start with d=x and Bob started with d=x+3. Each of them performed fortune telling and got a particular number in the end. Notice that the friends chose operations independently of each other, that is, they could apply different operations for the same i.

You learnt that either Alice or Bob ended up with number y in the end, but you don’t know whose of the two it was. Given the numbers Alice and Bob started with and y, find out who (Alice or Bob) could get the number y after performing the operations. It is guaranteed that on the jury tests, exactly one of your friends could have actually gotten that number.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

#include <bits/stdc++.h>
using namespace std;
typedef long long int ll;
bool isAlice = false;
void recur(ll index, ll sum, ll y, ll N, vector<ll> &vec)
{
if(isAlice) return;
if(index == N){
if(sum == y) isAlice = true;
return;
}
recur(index+1, sum + vec[index], y, N, vec);
recur(index+1, sum ^ vec[index], y, N, vec);
}
void solve()
{
isAlice = false;
ll n, x,y, ele, ans(0);
vector<ll> vec;
cin >> n >> x >> y;
bool isPal(true);
for(ll i = 0; i < n; i++)
{
cin >> ele;
vec.push_back(ele);
}
recur(0, x, y, n, vec);
if(isAlice) cout << "Alice\n";
else cout << "Bob\n";
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
ll test;
for (cin >> test; test--;)
solve();
}

### Round #771 (Div. 2)

#### A. Reverse

You are given a permutation p1,p2,…,pn of length n. You have to choose two integers l,r (1≤l≤r≤n) and reverse the subsegment [l,r] of the permutation. The permutation will become p1,p2,…,pl−1,pr,pr−1,…,pl,pr+1,pr+2,…,pn.

Find the lexicographically smallest permutation that can be obtained by performing exactly one reverse operation on the initial permutation.

Note that for two distinct permutations of equal length a and b, a is lexicographically smaller than b if at the first position they differ, a has the smaller element.

A permutation is an array consisting of n distinct integers from 1 to n in arbitrary order. For example, [2,3,1,5,4] is a permutation, but [1,2,2] is not a permutation (2 appears twice in the array) and [1,3,4] is also not a permutation (n=3 but there is 4 in the array).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

#include <bits/stdc++.h>
using namespace std;
typedef long long int ll;
void solve()
{
ll n;
cin >> n;
ll arr[n];
for (int i = 0; i < n; i++)
cin >> arr[i];
for (int i = 0; i < n; i++)
{
if (i + 1 != arr[i])
{
ll j = i;
while (arr[++j] != i + 1)
;
reverse(arr + i, arr + j + 1);
break;
}
}
for (int i = 0; i < n; i++)
cout << arr[i] << " ";
cout << endl;
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
ll test;
for (cin >> test; test--;)
solve();
}

#### B. Odd Swap Sort

You are given an array a1,a2,…,an. You can perform operations on the array. In each operation you can choose an integer i (1 ≤ i < n), and swap elements ai and ai+1 of the array, if ai+ai+1 is odd.

Determine whether it can be sorted in non-decreasing order using this operation any number of times.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

#include <bits/stdc++.h>
using namespace std;
typedef long long int ll;
bool solve()
{
ll n;
cin >> n;
ll arr[n];
for(ll i=0; i<n; i++)
cin >> arr[i];
for (ll i = 0; i < n-1; i++)
{
bool sortMore = false;
for (ll j = 0; j < n-i-1; j++)
{
if (arr[j] > arr[j+1])
{
if((arr[j]+arr[j+1])%2 == 0) return false;
else {
swap(arr[j], arr[j+1]);
sortMore = true;
}
}
}
if (!sortMore)
return true;
}
return true;
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
ll test;
for (cin >> test; test--;)
if(solve()) cout << "YES\n";
else cout << "NO\n";
}

### Round #772 (Div. 2)

#### A. Min Or Sum

You are given an array a of size n.

You can perform the following operation on the array:

Choose two different integers i,j (1 ≤ i < j ≤ n), replace ai with x and aj with y. In order not to break the array, ai aj=x y must be held, where denotes the bitwise OR operation. Notice that x and y are non-negative integers.

Please output the minimum sum of the array you can get after using the operation above any number of times.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

#include <bits/stdc++.h>
using namespace std;
typedef long long int ll;
void solve()
{
ll n, ele, ans(0);
cin >> n;
for (ll i = 0; i < n; i++)
{
cin >> ele;
ans |= ele;
}
cout << ans << endl;
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
ll test;
for (cin >> test; test--;)
solve();
}

#### B. Avoid Local Maximums

You are given an array a of size n. Each element in this array is an integer between 1 and 109.

You can perform several operations to this array. During an operation, you can replace an element in the array with any integer between 1 and 109.

Output the minimum number of operations needed such that the resulting array doesn’t contain any local maximums, and the resulting array after the operations.

An element ai is a local maximum if it is strictly larger than both of its neighbors (that is, ai>ai−1 and ai>ai+1). Since a1 and an have only one neighbor each, they will never be a local maximum.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

#include <bits/stdc++.h>
using namespace std;
typedef long long int ll;
void solve()
{
ll n, ans(0);
cin >> n;
ll arr[n];
for (ll i = 0; i < n; i++)
cin >> arr[i];
if (n == 2)
{
cout << 0 << endl
<< arr[0] << " " << arr[1] << endl;
return;
}
for (ll i = 1; i < n - 1; i++)
{
if (arr[i] > arr[i + 1] && arr[i] > arr[i - 1])
{
if (i + 2 < n && arr[i+1] < arr[i+2])
arr[i+1] = max(arr[i], arr[i+2]);
else
arr[i] = max(arr[i - 1], arr[i + 1]);
ans++;
}
}
cout << ans << endl;
for (ll i = 0; i < n; i++)
cout << arr[i] << " ";
cout << endl;
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
ll test;
for (cin >> test; test--;)
solve();
}

## March

### Round #755 (Div. 2)

#### A. Game

You are playing a very popular computer game. The next level consists of n consecutive locations, numbered from 1 to n, each of them containing either land or water. It is known that the first and last locations contain land, and for completing the level you have to move from the first location to the last. Also, if you become inside a location with water, you will die, so you can only move between locations with land.

You can jump between adjacent locations for free, as well as **no more than once** jump from any location with land *i* to any location with land **i+x**, spending x coins (x≥0).

Your task is to spend the minimum possible number of coins to move from the first location to the last one.

Note that this is always possible since both the first and last locations are the land locations.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

#include <bits/stdc++.h>
using namespace std;
typedef long long int ll;
ll solve()
{
ll n, ans(0);
cin >> n;
ll arr[n];
for (ll i = 0; i < n; i++)
cin >> arr[i];
if(n == 2) return 0;
ll start(1), end(n-2);
while(arr[start]){
start++;
if(start == n-1)
return 0;
}
while(arr[end]){
end--;
if(end == 1)
return 2;
}
return end - start + 2;
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
ll test;
for (cin >> test; test--;)
cout << solve() << endl;
}

## April

### April Fools Day Contest 2022

#### A. Game

1
2
3
4
5
6

#include <bits/stdc++.h>
using namespace std;
int main(){
cout << "red panda" << endl;
}

#### C. Pōja Verdon

Aenar has an array a consisting of n integers.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

#include <bits/stdc++.h>
using namespace std;
int main(){
int n, ele, sum = 0;
cin >> n;
for(int i=0; i<n; i++){
cin >> ele;
sum += ele;
}
cout << sum << endl;
}

## June

### Round #797 (Div. 3)

#### A. Print a Pedestal

Given the integer n — the number of available blocks. You must use all blocks to build a pedestal.

The pedestal consists of 3 platforms for 2-nd, 1-st and 3-rd places respectively. The platform for the 1-st place must be strictly higher than for the 2-nd place, and the platform for the 2-nd place must be strictly higher than for the 3-rd place. Also, the height of each platform must be greater than zero (that is, each platform must contain at least one block).

Example pedestal of n=11 blocks: second place height equals 4 blocks, first place height equals 5 blocks, third place height equals 2 blocks. Among all possible pedestals of n blocks, deduce one such that the platform height for the 1-st place minimum as possible. If there are several of them, output any of them.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
void solve()
{
ll n, hq, hr, h1, h2, h3;
cin >> n;
hq = n / 3;
hr = n % 3;
if (hr == 2)
{
cout << hq + 1 << " " << hq + 2 << " " << hq - 1 << endl;
}
else if (hr == 1)
{
if (hq == 2)
cout << hq << " " << hq + 2 << " " << hq - 1 << endl;
else
cout << hq + 1 << " " << hq + 2 << " " << hq - 2 << endl;
}
else
{
cout << hq << " " << hq + 1 << " " << hq - 1 << endl;
}
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
ll test, sol;
cin >> test;
for (ll t = 0; t < test; ++t)
solve();
return 0;
}

#### B. Array Decrements

Kristina has two arrays a and b, each containing n non-negative integers. She can perform the following operation on array a any number of times:

- apply a decrement to each non-zero element of the array, that is, replace the value of each element ai such that ai>0 with the value ai−1 (1≤i≤n). If ai was 0, its value does not change.

Determine whether Kristina can get an array b from an array a in some number of operations (probably zero). In other words, can she make ai=bi after some number of operations for each 1≤i≤n?

For example, let n=4, a=[3,5,4,1] and b=[1,3,2,0]. In this case, she can apply the operation twice:

- after the first application of the operation she gets a=[2,4,3,0];
- after the second use of the operation she gets a=[1,3,2,0].

Thus, in two operations, she can get an array b from an array a.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
bool solve()
{
ll n, i, diff, sum = 0, mini = INT_MAX;
cin >> n;
vector<ll> a(n), b(n);
for (i = 0; i < n; i++)
cin >> a[i];
for (i = 0; i < n; i++)
cin >> b[i];
for (i = 0; i < n; i++)
{
diff = a[i] - b[i];
if (diff < 0)
return false;
if (b[i] > 0)
mini = min(mini, diff);
}
for (i = 0; i < n; i++)
{
a[i] -= mini;
if (a[i] > b[i])
return false;
}
return true;
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
ll test, sol;
cin >> test;
for (ll t = 0; t < test; ++t)
{
if (solve())
cout << "YES\n";
else
cout << "NO\n";
}
return 0;
}

## July

### Round #804 (Div. 2)

#### A. The Third Three Number Problem

You are given a positive integer n. Your task is to find any three integers $a$, $b$ and $c$ $(0 ≤a ,b, c ≤ 10^9)$ for which $(a \bigoplus b)+(b \bigoplus c)+(a \bigoplus c)=n$, or determine that there are no such integers.

Here $a \bigoplus b$ denotes the bitwise XOR of $a$ and $b$. For example, $2 \bigoplus 4=6$ and $3 \bigoplus 1=2$.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

#include <bits/stdc++.h>
using namespace std;
typedef long long int ll;
void solve()
{
ll n;
cin >> n;
if(n%2) {
cout << -1 << endl;
return;
}
ll a = n/2, b = 0, c = 0;
cout << a << " " << b << " "<< c << endl;
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
ll test;
for (cin >> test; test--;)
solve();
}

#### B. Almost Ternary Matrix

You are given two **even** integers $n$ and $m$. Your task is to find any binary matrix $a$ with $n$ rows and $m$ columns where every cell $(i,j)$ has **exactly** two neighbours with a different value than $a_i,j$.

Two cells in the matrix are considered neighbours if and only if they share a side. More formally, the neighbours of cell $(x,y)$ are: $(x−1,y), (x,y+1), (x+1,y) and (x,y−1)$.

It can be proven that under the given constraints, an answer always exists.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

#include <bits/stdc++.h>
using namespace std;
typedef long long int ll;
void solve()
{
ll n, m;
cin >> n >> m;
bool zero = true;
string even = "1 0 ", odd = "0 1 ";
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m/2; j++)
if(i%4 <= 1)
if(j%2)
cout << odd;
else
cout << even;
else
if(j%2)
cout << even;
else
cout << odd;
cout << endl;
}
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
ll test;
for (cin >> test; test--;)
solve();
}

### Round #806 (Div. 4)

#### A. YES or YES ?

There is a string 𝑠 of length 3, consisting of uppercase and lowercase English letters. Check if it is equal to “YES” (without quotes), where each letter can be in any case. For example, “yES”, “Yes”, “yes” are all allowable.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
void solve()
{
string s;
cin >> s;
transform(s.begin(), s.end(), s.begin(), ::tolower);
if(s == "yes")
cout << "YES\n";
else
cout << "NO\n";
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
ll test;
cin >> test;
for (ll t = 0; t < test; ++t)
solve();
return 0;
}

#### B. ICPC Balloon

In an ICPC contest, balloons are distributed as follows:

- Whenever a team solves a problem, that team gets a balloon.
- The first team to solve a problem gets an additional balloon.

A contest has 26 problems, labelled 𝖠, 𝖡, 𝖢, …, 𝖹. You are given the order of solved problems in the contest, denoted as a string 𝑠, where the 𝑖-th character indicates that the problem 𝑠𝑖 has been solved by some team. No team will solve the same problem twice. Determine the total number of balloons that the teams recieved. Note that some problems may be solved by none of the teams.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll solve()
{
ll n,ans = 0;
string s;
cin >> n >> s;
unordered_map<char, int> mp;
for(auto ch: s){
if(mp[ch])
ans++;
else{
ans += 2;
mp[ch]++;
}
}
return ans;
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
ll test;
cin >> test;
for (ll t = 0; t < test; ++t)
cout << solve() << endl;
return 0;
}

#### C. Cypher

Luca has a cypher made up of a sequence of 𝑛 wheels, each with a digit 𝑎𝑖 written on it. On the 𝑖-th wheel, he made 𝑏𝑖 moves. Each move is one of two types:

up move (denoted by 𝚄): it increases the 𝑖-th digit by 1. After applying the up move on 9, it becomes 0. down move (denoted by 𝙳): it decreases the 𝑖-th digit by 1. After applying the down move on 0, it becomes 9.

Example for 𝑛=4.

Luca knows the final sequence of wheels and the moves for each wheel. Help him find the original sequence and crack the cypher.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
void solve()
{
ll n, len;
string s;
cin >> n;
vector<ll> v(n);
for(ll i=0; i<n; i++)
cin >> v[i];
for(ll i=0; i<n; i++){
cin >> len >> s;
ll cnt = 0;
for(char ch: s)
{
if(ch == 'U')
{
if(v[i] == 0)
v[i] = 9;
else
v[i]--;
}else{
if(v[i] == 9)
v[i] = 0;
else
v[i]++;
}
}
cout << v[i] << " ";
}
cout << endl;
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
ll test;
cin >> test;
for (ll t = 0; t < test; ++t)
solve();
return 0;
}

#### D. Double Strings

You are given 𝑛 strings 𝑠1,𝑠2,…,𝑠𝑛 of length at most 8.

For each string 𝑠𝑖, determine if there exist two strings 𝑠𝑗 and 𝑠𝑘 such that 𝑠𝑖=𝑠𝑗+𝑠𝑘. That is, 𝑠𝑖 is the concatenation of 𝑠𝑗 and 𝑠𝑘. Note that 𝑗 can be equal to 𝑘.

Recall that the concatenation of strings 𝑠 and 𝑡 is 𝑠+𝑡=𝑠1𝑠2…𝑠𝑝𝑡1𝑡2…𝑡𝑞, where 𝑝 and 𝑞 are the lengths of strings 𝑠 and 𝑡 respectively. For example, concatenation of “code” and “forces” is “codeforces”.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
string solve()
{
ll n;
string str, ans = "";
cin >> n;
unordered_map<string, int> mp;
vector<string> v(n);
for(ll i=0; i<n; i++){
cin >> str;
v[i] = str;
mp[str]++;
}
for(auto s:v){
ll len = s.size();
bool isFix = false;
if(len > 1){
for(ll i=1; i<len; i++){
string a = s.substr(0, i);
string b = s.substr(i, len);
if(mp[a] && mp[b])
isFix = true;
}
}
if(isFix)
ans += '1';
else
ans += '0';
}
return ans;
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
ll test;
cin >> test;
for (ll t = 0; t < test; ++t)
cout << solve() << endl;
return 0;
}

## October

### Round #828 (Div. 3)

#### A. Number Replacement

An integer array 𝑎1,𝑎2,…,𝑎𝑛 is being transformed into an array of lowercase English letters using the following prodecure:

While there is at least one number in the array:

- Choose any number 𝑥 from the array 𝑎, and any letter of the English alphabet 𝑦.
- Replace all occurrences of number 𝑥 with the letter 𝑦.

For example, if we initially had an array 𝑎=[2,3,2,4,1], then we could transform it the following way:

- Choose the number 2 and the letter c. After that 𝑎=[𝑐,3,𝑐,4,1].
- Choose the number 3 and the letter a. After that 𝑎=[𝑐,𝑎,𝑐,4,1].
- Choose the number 4 and the letter t. After that 𝑎=[𝑐,𝑎,𝑐,𝑡,1].
- Choose the number 1 and the letter a. After that 𝑎=[𝑐,𝑎,𝑐,𝑡,𝑎].

After the transformation all letters are united into a string, in our example we get the string “cacta”.

Having the array 𝑎 and the string 𝑠 determine if the string 𝑠 could be got from the array 𝑎 after the described transformation?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

#include <iostream>
#include <vector>
using namespace std;
typedef long long ll;
void solve()
{
ll n,q, t, x, i, odd_sum(0), odd_count(0), even_sum(0), even_count(0);
cin >> n >> q;
vector<ll> v(n);
for(i=0; i<n; i++)
cin >> v[i];
for(i=0; i<n; i++){
if(v[i]%2 != 0){
odd_count++;
odd_sum += v[i];
}else{
even_count++;
even_sum += v[i];
}
}
while(q--){
cin >> t >> x;
if(t == 1 and odd_count >0){
odd_sum += (x * odd_count);
if(x%2) {
even_count += odd_count;
odd_count = 0;
}
}else if(t ==0 && even_count > 0){
even_sum += (x * even_count);
if(x%2) {
odd_count += even_count;
even_count = 0;
}
}
cout << even_sum + odd_sum << endl;
}
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
ll test;
cin >> test;
for (ll t = 0; t < test; ++t)
solve();
return 0;
}

#### B. Even-Odd Increments

You are given 𝑛 of integers 𝑎1,𝑎2,…,𝑎𝑛. Process 𝑞 queries of two types:

- query of the form “0 𝑥𝑗”: add the value 𝑥𝑗 to all even elements of the array 𝑎,
- query of the form “1 𝑥𝑗”: add the value 𝑥𝑗 to all odd elements of the array 𝑎.

Note that when processing the query, we look specifically at the odd/even value of 𝑎𝑖, not its index.

After processing each query, print the sum of the elements of the array 𝑎.

Please note that the answer for some test cases won’t fit into 32-bit integer type, so you should use at least 64-bit integer type in your programming language (like long long for C++).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

#include <iostream>
#include <vector>
using namespace std;
typedef long long ll;
bool solve()
{
ll n;
cin >> n;
string s;
vector<ll> v(n);
for(ll i=0; i<n; i++)
cin >> v[i];
cin >> s;
for(ll i=0; i<n; i++){
ll curr = v[i];
for(ll j=i+1; j<n; j++)
if(v[j] == curr && s[i] != s[j])
return false;
}
return true;
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
ll test;
cin >> test;
for (ll t = 0; t < test; ++t)
if(solve())
cout << "YES\n";
else
cout << "NO\n";
return 0;
}

#### C. Traffic Light

You find yourself on an unusual crossroad with a weird traffic light. That traffic light has three possible colors: red (r), yellow (y), green (g). It is known that the traffic light repeats its colors every 𝑛 seconds and at the 𝑖-th second the color 𝑠𝑖 is on.

That way, the order of the colors is described by a string. For example, if 𝑠=”rggry”, then the traffic light works as the following: red-green-green-red-yellow-red-green-green-red-yellow- … and so on.

More formally, you are given a string 𝑠1,𝑠2,…,𝑠𝑛 of length 𝑛. At the first second the color 𝑠1 is on, at the second — 𝑠2, …, at the 𝑛-th second the color 𝑠𝑛 is on, at the 𝑛+1-st second the color 𝑠1 is on and so on.

You need to cross the road and that can only be done when the green color is on.

You know which color is on the traffic light at the moment, but you don’t know the current moment of time. You need to find the minimum amount of time in which you are guaranteed to cross the road.

You can assume that you cross the road immediately.

For example, with 𝑠=”rggry” and the current color r there are two options: either the green color will be on after 1 second, or after 3. That way, the answer is equal to 3 — that is the number of seconds that we are guaranteed to cross the road, if the current color is r.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

#include <iostream>
#include <vector>
using namespace std;
typedef long long ll;
ll solve()
{
ll n, ans = 0, st;
char c;
string s;
cin >> n >> c >> s;
s += s;
bool ch = true;
for (ll i = 0; i < s.size(); i++)
{
if (s[i] == c && ch)
{
st = i;
ch = false;
}
if (s[i] == 'g' && !ch)
{
ans = max(ans, i - st);
ch = true;
}
}
return ans;
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
ll test;
cin >> test;
for (ll t = 0; t < test; ++t)
cout << solve() << endl;
return 0;
}

## October

### Round #835 (Div. 4)

#### A. Medium Number

Given three distinct integers 𝑎, 𝑏, and 𝑐, find the medium number between all of them.

The medium number is the number that is neither the minimum nor the maximum of the given three numbers.

For example, the median of 5,2,6 is 5, since the minimum is 2 and the maximum is 6.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll solve()
{
ll arr[3];
cin >> arr[0] >> arr[1] >> arr[2];
sort(arr, arr+3);
return arr[1];
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
ll test;
cin >> test;
for (ll t = 0; t < test; ++t)
cout << solve() << endl;
return 0;
}

#### B. Atilla’s Favorite Problem

In order to write a string, Atilla needs to first learn all letters that are contained in the string.

Atilla needs to write a message which can be represented as a string 𝑠. He asks you what is the minimum alphabet size required so that one can write this message.

The alphabet of size 𝑥 (1≤𝑥≤26) contains only the first 𝑥 Latin letters. For example an alphabet of size 4 contains only the characters 𝚊, 𝚋, 𝚌 and 𝚍.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int solve()
{
int n , ans = -1;
string s;
cin >> n >> s;
for(char ch: s)
ans = max(ans, ch - '0');
return ans - 48;
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
ll test;
cin >> test;
for (ll t = 0; t < test; ++t)
cout << solve() << endl;
return 0;
}

#### C. Advantage

There are 𝑛 participants in a competition, participant 𝑖 having a strength of 𝑠𝑖.

Every participant wonders how much of an advantage they have over the other best participant. In other words, each participant 𝑖 wants to know the difference between 𝑠𝑖 and 𝑠𝑗, where 𝑗 is the strongest participant in the competition, not counting 𝑖 (a difference can be negative).

So, they ask you for your help! For each 𝑖 (1≤𝑖≤𝑛) output the difference between 𝑠𝑖 and the maximum strength of any participant other than participant 𝑖.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
void solve()
{
ll n;
cin >> n;
vector<ll> v(n);
for(ll i=0; i<n; i++)
cin >> v[i];
vector<ll> vv = v;
sort(v.begin(), v.end());
ll first = v[n-1], second = v[n-2];
for(ll i=0; i<n; i++){
if(vv[i] < first)
cout << vv[i] - first << " ";
else
cout << first - second << " ";
}
cout << endl;
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
ll test;
cin >> test;
for (ll t = 0; t < test; ++t)
solve();
return 0;
}

### Round #836 (Div. 2)

#### A. SSeeeeiinngg DDoouubbllee

A palindrome is a string that reads the same backward as forward. For example, the strings 𝚣, 𝚊𝚊𝚊, 𝚊𝚋𝚊, and 𝚊𝚋𝚌𝚌𝚋𝚊 are palindromes, but 𝚌𝚘𝚍𝚎𝚏𝚘𝚛𝚌𝚎𝚜 and 𝚊𝚋 are not.

The double of a string 𝑠 is obtained by writing each character twice. For example, the double of 𝚜𝚎𝚎𝚒𝚗𝚐 is 𝚜𝚜𝚎𝚎𝚎𝚎𝚒𝚒𝚗𝚗𝚐𝚐.

Given a string 𝑠, rearrange its double to form a palindrome. Output the rearranged string. It can be proven that such a rearrangement always exists.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
string solve()
{
string s;
cin >> s;
sort(s.begin(), s.end());
string t = s;
reverse(s.begin(), s.end());
return t + s;
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
ll test;
cin >> test;
for (ll t = 0; t < test; ++t)
cout << solve() << endl;
return 0;
}

#### B. XOR = Average

You are given an integer 𝑛. Find a sequence of 𝑛 integers 𝑎1,𝑎2,…,𝑎𝑛 such that 1≤𝑎𝑖≤109 for all 𝑖 and

$𝑎_1⊕𝑎_2⊕ … ⊕𝑎_𝑛 = 𝑎_1+𝑎_2+⋯+𝑎_𝑛 / 𝑛$

where ⊕ represents the bitwise XOR.

It can be proven that there exists a sequence of integers that satisfies all the conditions above.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
void solve()
{
ll n;
cin >> n;
cout << "1 ";
ll e = n%2 ? 1 : n+1;
for(int i=1; i<n; i++)
cout << e << " ";
cout << endl;
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
ll test;
cin >> test;
for (ll t = 0; t < test; ++t)
solve();
return 0;
}